Appendix H:

Helpful formulas

Computing flow from BTU/h				
Simplified formula	GPM = BTU/h \div ($\Delta t \times 500$)			
Example: Determine the flow of 286,000 BTU/h at a 20°F differential temperature.	GPM = 286,000 ÷ (20 x 500) GPM = 286,000 ÷ 10,000 GPM = 28.6			

Calculating active loop length

Note: The leader	Deam #2 + 1 0 = active lear at
Note: The leader	Room $ft^2 \times 1.0 = active loop at$
length must be	12" o.c.
added to the active	Room $ft^2 \times 1.2 = active loop at$
loop length in order	10" o.c.
to obtain the	Room $ft^2 \times 1.33 = active loop at$
total loop length.	9" o.c.
	Room $ft^2 \times 1.5 = active loop at$
	8" o.c.
	Room $ft^2 \times 1.7 = active loop at$
	7" o.c.
	Room $ft^2 \times 2.0 = active loop at$
	6" o.c.

Amount of Joist Trak™ panels (A5080375, A5080500)

Active loop length x 0.2125

Amount of Quik Trak® panels (A5060701) and returns (A5060702)

Room ft² x 0.386 (panels) Room ft² x 0.043 (returns)

Amount of PEX clips (F7060375, F7051258, F7057500, F7051001)

Active Loop Length ÷ 3

Floor surface temperature

(BTU/h/ft² ÷ 2.0) + Room setpoint

Supply fluid temp. after first injection point on primary loop

$$(F_A \times T_A) + (F_B \times T_B) = (F_C \times T_C)$$

F_A = Primary flow rate after injection leg

F_R = Flow rate for return injection leg

F_c = Primary flow rate after return leg

 T_{Λ} = Primary temp. after injection leg

T_B = Return temp. on return injection leg

T_c = Primary temp. after return leg

Example: Given the detail above, calculate the primary loop (boiler loop) temperature after the first injection location.

 $(7 \times 180) + (3 \times 160) = 10x$ 1260 + 480 = 10x1740 = 10x174 = x

The primary loop temperature after the first injection location is

Injection pump flow rates

Refer to Appendix I for more information

$$F_{V} = (F_{1} \times T_{D}) \div (T_{1} - T_{R})$$

 $F_v = Flow rate (injection loop) in gpm$

F₁ = Radiant (secondary loop) flow rate in gpm

 T_1 = Boiler (primary loop) supply temp.

T₂ = Radiant (secondary loop) supply temp.

 T_p = Radiant (secondary loop) return temp.

 T_D = Radiant (secondary loop) differential temp.

Example: If values at design condition

are:

 $F_1 = 30 \text{ gpm}$

 $T_1 = 180^{\circ}F$

 $T_2 = 130^{\circ}F$

 $T_R = 120$ °F

 $T_D = 10^{\circ}F$

Find the injection pump flow rate.

 $F_{v} = (30 \times 10) \div (180-120)$

 $F_{v} = (300) \div (60)$

 $F_{v} = 5 \text{ gpm}$

Appendix H:

Helpful formulas

Fuel consumption based on degree day:

$$F = \frac{HL \times 24 \times DD}{E \times P \times TD}$$

HL= Heating load (BTU/h)

24 = Hours in a day

DD = Degree day

E = Boiler efficiency (AFUE)

P = Heating value of fuel (BTU)

TD= Temperature differential

F = Annual fuel consumption

Example: A 40,000-square- foot hangar in Bangor, Maine using an 82% AFUE oil boiler (Number 2 fuel oil). The heat load for the hangar is 1,288,128 BTU/h at design. Outside design temperature is -11°F with an indoor setpoint temperature of 65°F. Number 2 fuel oil is priced at \$0.80 per gallon.

$$F = \frac{1,288,128 \times 24 \times 8,220}{0.82 \times 138,000 \times 76}$$

$$F = \frac{254,121,891.840}{8,662,480}$$

F = 29,335.93 gallons of fuel oil F = 29,335.93 x 0.80 = \$23,469/ season

Loadng for Thermal Actuators (TA) Computed at a minimum 10% line loss

TA initial draw: 0.1458 amps Amps x volts = current $0.1458 \times 24 = 3.5 \text{ VA per TA}$

Example:

50 VA ÷ 3.5 VA = 14.29

14.29 x 0.9 = 12.83 (10% reduction)

12 TAs per 50 VA transformer

40VAC transformer = 10 TA

50VAC transformer = 12 TA

75VAC transformer = 19 TA

100VAC transformer = 25 TA

Fuel comparison in BTU

Natural gas	100,000 BTU per 1 CCF (1 therm.)
Propane	91,800 BTU per gallon
No. 2 fuel oil	139,000 BTU per gallon
Kerosene	134,000 BTU per gallon
Electric	3,412 BTU per Kilowatt Hour (KWH)
Wood	14,000,000 BTU per cord (mixed)

Supply and return pipe sizing (at a 10°F Δt)

Piping	BTU/h	GPM	Pipe size (in.)
Copper	10K – 20K	2 – 4	3/4"
	20K – 45K	4 – 9	1"
	30K – 80K	6 – 16	11/4"
	50K – 105K	10 – 21	1½
	100K – 225K	20 – 45	2""
PEX (Wirsbo hePEX™	2.5K – 10K	0.5 - 2	1/2"
and Uponor AquaPEX®)	5K – 15K	1 – 3	3/4"
	15K – 25K	3 – 5	1"
	20K – 45K	4 – 9	11/4"
	30K – 70K	6 – 14	1½
High-density Polyethylene (HDPE)	75K – 205K	15 – 41	2"
	150K – 575K	30 – 115	3"
	250K – 1,125K	50 – 225	4"

Boiler main pipe sizing (at a 20°F Δt)

Piping	BTU/h	GPM	Pipe size (in.)
Copper	20K – 40K	2 – 4	3/4"
	40K – 90K	4 – 9	1"
	60K – 160K	6 – 16	11/4"
	100K – 210K	10 – 21	1½"
	200K – 450K	20 – 45	2"